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THE CLASSICAL FIELD THEORY OF MATTER
AND ELECTRICITY

II. THE ELECTROMAGNETIC THEORY OF PARTICLES

By S. R. MILNER, F.R.S.
(First submutted 31 May 1954—in revised form 25 February 1959)
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The electromagnetic field theory developed in the previous paper is here applied to the problem
of devising systems which behave as classical particles. It is found that spherically symmetrical
systems can exist which, when they are stationary: (1) satisfy the static form of the extended
equations at every point of space; and (2) are characterized mechanically by being everywhere in
equilibrium under the sole action of the Maxwellian stress of their own field—thus they are pure
electromagnetic systems subsisting free of external constraint. (3) When they are transformed so
as to be in motion, the energy and momentum they possess are exactly those required for material
particles by relativity theory.

A rather obvious restriction made on the generality of the conditions for particle existence
brought to light the possibility of a solution denoting an ‘atomic’ system built up of successive
shells, each of which must contain the same energy, and net charge, as the others. The reason for
such a result is that, when their very great generality is restricted in the most straightforward way,
the field equations reduce to the form of a wave equation. The relation of this to the wave equation
of modern theory is briefly discussed.

The transformation behaviour of the field equations when a Lorentz transformation is applied
to the co-ordinates is dealt with in this paper; it is found that they remain invariant in form under
wider transformations of the field variables than are permitted by the classical equations. The
variables may be submitted to a certain transformation without the co-ordinates being trans-
formed at all. The physical meaning of this is investigated and an explanation of it found.

1. INTRODUCTION

The well-known classical theory of the electron, dating from the period of its discovery
and now perhaps somewhat out-moded, is largely due to the great development of it by
H. A. Lorentz; yet he himself drew attention to a defect in it which ever since has been a
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206 S. R. MILNER ON THE CLASSICAL

source of difficulty and doubt. He pointed out that his electron device of a charged spherical
shell, contracting to a spheroid when in motion, did not fit in with the requirements of
mechanical theory. A sound mechanical scheme requires the energy w and momentum g
of a particle to be related to its velocity v by the equation

dw/dg = v, (1-1)

for only so can the idea be developed that the increments, dw = Fdx, dg = Fd¢ (where
dx = vd¢), are produced by a force F. Yet this condition is not satisfied by the energy and
momentum of the electromagnetic field surrounding the shell. As he tells us in his book
The theory of electrons (190g), this was first pointed out by M. Abraham. Lorentz observed
that the difficulty would be evaded by assuming the existence of a suitable uniform energy
density inside the shell, although this could not be electromagnetic energy, there being
no field there. Further H. Poincaré remarked that, if it is assumed that there is associated
with the energy density an equal uniform tensional stress which acts on the charge of the
shell, this will hold the latter in equilibrium against the outward pull of the electric field.
One can only admire the brilliance of this pioneering work which led to the relativity formula
for the mass of a moving electron; nevertheless, it soon became clear that the additional
energy which had to be called in meant that the attempt to found a purely electromagnetic
theory of the mass of the electron had broken down. And although this position was reached
nearly 50 years ago the difficulties raised have not so far as I know been materially over-
come since, in spite of numerous attempts to modify the Maxwell-Lorentz equations for
the purpose.

The new terms ¢, and £, in the field equations, and the additional energy-stress to which
they give rise, obtained in part I, open up, however, evident possibilities of resolving the
difficulties. Their application to the problem is discussed in §§3, 5, 6. Section 2 contains
an account of some necessary preliminary investigations of the transformation possibilities
of the equations, and in §4 some unexpected consequences of these are considered in
more detail.

2. TRANSFORMATION THEORY OF FIELD EQUATIONS

When expressed in terms of ordinary space-time co-ordinates ¢t, x,, z the general field
equations consist of the electromagnetic identity I (4:10) subjected to the conservation
conditions I (4-13). In order that these should constitute a valid set of equations it is
necessary that each should remain invariant in form when the co-ordinates are subjected
to a Lorentz transformation. The following investigation not only shows that this is so,
but also reveals an invariance in form to another type of transformation which is of some
importance in the general theory of the equations.

(a) Invariance of form of electromagnetic identity

Discussion of the transformations is much simplified by dealing with the representation
I(4:12a,b,¢) of the identity in Euclidean space, as the transformations can then be treated
formally as real rotations. The general problem presented is: in the identity,

004 =q, z=0R¢, IR"z=yg,
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FIELD THEORY OF MATTER AND ELECTRICITY. II 207

what individual rotations can be given to the three vectors d, z, ¢ without altering the form
of the equations? It can be solved by making use of a result (B (2-14)) obtained in the
earlier papers that, if any 42 matrix 4 undergoes the rotation transformation

A—>tRdS.4.¢RfS, (2-1a)
then its e-transform °4 undergoes the rotation '
‘A —>tRéS1.¢A.dR-1 fS (2:1b)

(¢, d, e, f are here arbitrary unit vectors). To apply this, let [d] denote the 42 matrix which
has |(d; .. d,) for its first column, and all the other terms zero, then JR =2¢[3] (B (2-6)).
Consequently, if the vector d undergoes a rotation to

9" =tRdSd, ie. [d]'=¢RdS.[d].1, (2-2a)
then the vector system JR undergoes a rotation to
IR =¢R.IR.4R"L (2-2b)
Hence we get the mathematical identity
(6RdS3) R =R .IR .4R-! (2-2¢)

(the long bar denotes that the resultant vector below it is written in row form). The equi-
valence of these expressions can be applied to the equation z = dR¢, for, multiplying both
sides of it by ¢R /'S, we get
RfSz=tRfS.IR.¢ =cR.IR.fS¢ =R .IR.4R"1dR fS¢,

giving 7R fSz = (tRdS3) R.4R JS¢. (23)

Equation (2-3) gives the most general rotations which can be applied to the three vectors
z, d, ¢ consistent with maintaining the relation z’ = d’'R¢’ between their rotated values.
Each in general must rotate in a different, though not completely independent, way. If
we try to make them all undergo the same rotation, or (what is equivalent) rotate the axes
and expect the vectors to remain fixed in the 4-space, the common rotation cannot be more
extensive than ¢R¢S. This is a rotation confined to xyz-space; for all such the vectors do
behave as standard vectors in the tensor calculus, but this is no longer the case when the
rotations extend into the time dimension.

Finally, since 49 is invariant and so ¢ must rotate in the same way as ¢, the rotations of
(2:3) hold in dR-1z—q = 0. It follows that the space-time equivalents of the identity,
(I (4-10), (4-13)), continue to hold with the space-time equivalents of the transformed

variables 0 =eRdSI, 2z = ¢ +ik' = iR FS(e-+ih), }
¢ =1 +is’ = dRFS(r+is), ¢ = ' +iy' = ARTS(Y +1y).

Classical transformations a special case

(2-4)

The transformations (2-4) are wider than those the standard electromagnetic theory
allows for e, h, j, and j. Let us see first how they include these. We may dismiss the case of
the general rotation ¢R dS of d as it merely leads to the complication of complex co-ordinates,
and confine attention to the inverse Lorentz transformation I (2-11), which changes the
co-ordinate vectors x and x into respectively

¥ =cReS™1x, x' = L"x. : (2-5)
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208 S. R. MILNER ON THE CLASSICAL

The changed values of the corresponding covariant d and D are obtained by applying the
standard tensor rules given in matrix form in B (1-2), and are

¥ — @RES )9 —ReS9, D' — (L) D~ LD, (2:6)

since cR¢S™! is orthogonal and L symmetric. (To introduce ¢S-! into (2-4) put d = 7,
noting that #¢S = ¢S~1.) The most general rotational transform of

IR(e+ih) — (r+is) = 0,

consistent with the inverse Lorentz transformation of the co-ordinates is consequently

(cR2S719) R-1.ZR FS(e+ih) —cR1 FS(r-t-is) = 0. (27)
Superposed on the determinate rotations, cR and ¢R~!, respectively, which e-i4 and r+1s
must undergo in consequence of that of d, a common rotation /S, in which fis arbitrary,
can be applied to both.
The classical transformations are arrived at by making the special choice for f if f = ¢, then

¢ +1h' =R eS(e+ik), 1 +is’ = cR-1eS(r+1is). (2-84a,b)

As regards the first, it is easy to verify by using I (2:9), (2-10), (2-13) and the conversion
formula I (2-24), that it gives the same results for e, . . ¢,, &, .. &, as are obtained in stan-
dard electromagnetic theory. The two transformations, nevertheless, are quite different
in form, so it is interesting to trace the reason why in spite of this they give the same result.
The relation between the complex vector ¢+i% and the 2nd rank antisymmetric tensor
Fw of the standard equations is expressed in a simple way in E-number theory. The matrix
F which denotes [F#] in Euclidean 4-space is obtained from it by evaluating {[F#]¢,
and is given in terms of ¢, . . &, in (2-94). On the right the e-transform of ' determined as

described in 4 § 3 (%), is also given

. le, e, e, . ie,+h, ie,+h, ie,+h,
—ie, . —h, h —ie,+h, . . .
F={ | YL, F=| | . (2:94a,0)
—ie, h, . —h, —ie,+h, . .
—ie, —h, R, . —ie,+h,

On conversion by (2:18), the first column of ¢F becomes the 234 terms of — (e-+i%), and
the first row those of — (¢—ik). Thus the relation is that a 42 matrix which has the space com-
ponents of — (e--1k) as the space terms of its first column, and their conjugates as those of ils first row,
with all its other terms zero, and the matrix F which expresses [F#] in Euclidean 4-space, are e-trans-
Jorms of each other; i.e. with ¢, h; = 0,

¢F = —{[e-+ih] +[e—ik]}, °(°F) = F. (2:9¢)

The relation enables us to determine the transformation of /' which corresponds to (2:84) ;

for, since ¢’ —ih’ = ¢—ihcR ¢S, as is easily seen, we have
(°F)" =T¢R¢S.°F .cR TS, (2104)
and consequently by (2-1) F' =¢ReS-1.F.cR"1cS. (2:100)

This denotes an inverse Lorentz rotation of both columns and rows of ¥, and when converted
into space-time terms reduces to the classic form of the transformation.
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The relation between the complex 3-vector h +ie and F#” equivalent to (2-9) was derived
by Laporte & Uhlenbeck (1931) in terms of the spinor notation of van der Waerden’s
theory. They have also by this means derived the classic electromagnetic equations as
complex equations in h+ie. So far as I can see, van der Waerden’s spinor theory does not
include in its scope the additional terms ¢, and /%, which are an essential part of a general
4-vector field, nor the more extensive transformation (2-7) which follows from the applica-
tion of E-number theory—but I do not know about possibilities of later extensions of the
theory to 4-suffixed spinors. In any case it is not possible to generalize F as a single matrix
to include the case of finite ¢, and 4,. For the general field the complex-vector description
seems much the simplest.

As regards 7+-is in (2-8) it will be observed that it undergoes a direct Lorentz rotation,
so that the space-time r transforms into r’ = Lr, not like x but like a covariant vector. It is
not, however, r but the charge and current vector j with whose behaviour the standard
theory is concerned. Since ¢, is now invariant, we have by I (4:10a)

j'=n('=D’¢) = pL(r—De) = pL.7j = L7j (2:11)

which is the classical formula.

Nevertheless, the classical rotation transformations of e, h, and j form only a particular
choice out of an infinite number of them that leave invariant the form of the equation.
The f of the rotation f'S in (2-4) is completely arbitrary so long as it is independent of x, and
this S-rotation may be applied at will to the complex vectors of the identity without changing the co-
ordinate system in any way. For if each of the three equations of the identity is pre-multiplied
through by f'S, this commutes with the differentiator, so that it may be taken to the right
of it and applied to the vectors.

(b) Invariance of form of conservation restriction
The following proof that equation I (4-135), which can be written compactly as

H(e+1h) Si(r—1is) 4 (r+is) Sy(e—ik)} = 0 (2:124q)

and which expresses these conditions, retains its form when e--ik and r-+is undergo the
general rotations (2-8) is based on the rules for the multiplication of members of a quatern-
ionic set (in this case S) derived in paper 4. With these values (2-8) the left-hand side of
I (4:13b) is readily seen to be

H(6+iR) FS-12R-1.S, . c¥R -1 F*8 (r —is) -+ (F+i3) FS~12R . S,.c*RF*S (e —ih)}.  (2-120)

Since ¢ is a ‘simple-term’ vector (|(c,,ic,, ic,, ic,)), whence ¢*R-! = 7R, the R-factors cancel,
as they commute with the S, so it is clear that as far as the R-part of the rotations is con-
cerned (2:12) is invariant. But neither of these simplifications applies to S, for f might
be chosen if we wish to be a fully complex vector. We have, however,

FSTIS*S = fo [ 582 8kSp =fuf §S2 Ry S

1 The last conversion in (2-11) illustrates a property of the Lorentz matrix due to the fact that ..
converts R, into S, and vice versa, thus, by 1(2:12) and A (2-14),

yLy =& peR-"1y . qe Syl = {1eS-1eR{ = L1

26 Vor. 253. A.
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210 S. R. MILNER ON THE CLASSICAL

on evaluating the product S;S; by 4 (2:23¢), and on further evaluating S;'S; by (/) of
the same set of equations,

JTS_ISkFS :j;cf}‘Roalekjﬂ S;= (fRLR,f*),S, = aP’S,, say, (2:13)
since the content of the brackets for fixed £ denotes a vector. Consequently (2-12) takes the
form La® {(z+-1h) S,(r—is) + (7 1-15) S,(e —ih)}, (2:14)

and so the transformed expression of I (4-135) for a given £ is simply the sum of the four
original expressions each multiplied by an appropriate factor, and since these vanish, it
remains zero.

The extended transformation of e¢-1i% also leaves the general conservation equation 9,Z;, = 0
(I (4-14)) invariant in_form. With the transformations of (2-8)

(e-+ih) (6—ih) - eR FS. (e+ik) (6—ik) .cR f*S-1 (2:154)
and the ¢-transform Z of this by (2-1) consequently undergoes the rotation
Z > cR7S-1.Z FR-Lf*S-1, (2:15b)

(If asin (2-8) we put for the arbitrary f the simple-form value ¢, the post-factor of Z becomes
¢R~1¢S. This makes the rotation which Z undergoes in the fourfold reduce to the (inverse)
Lorentz rotation of a standard 2nd-rank tensor, and brings Z (apart from the ¢,, ¢4, which it
contains) into full accordance with the classical theory.)

In general, in the transformed system we shall have

9,Z%, = (¢ReS™19); (R eS~1 ZFR-1f*S-1),,
= (eR2S71),; (GRS, (JR™Y*S™Y),,0,Z,
= (FR7Lf#87Y),.0,Z;,,, (2:16)
since the product of the first two factors is the j/th term of the unit matrix, which sub-
stitutes j for / in Z,,,. It is clear that when 9, Z,, = 0 the transformed equation will also be

zero, even when ¢+ ik has undergone the arbitrary rotation /S, as the effect of this is merely
to form a sum of a number of zero terms.

3. THE CONSTRUCTION OF CHARGED PARTICLES
(a) Lorentz electron
Consider a static field consisting of a scalar #, of uniform magnitude

h, = q/(4ma?) (qconst.) (31)

inside a stationary sphere of radius a centred at the origin, and outside it a radial electric
force e of magnitude
g ¢, = ql(4mr?) (3:2)

at distance 7 from the centre. These values satisfy the electromagnetic equations I (4-11)
with 7, . . s5,, alternatively j, . . £,, zero, everywhere inside and outside the sphere. They are,
however, discontinuous at = a, where we must suppose that #, falls to zero, and e, rises
from zero, though an infinitely thin shell at the surface of the sphere. If da is the thickness
of this shell we shall have in it

dive = ¢,/da =j, =71, since ¢ = 0. (3:3a)
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There is thus an infinite electric charge density in the shell, and ¢ denotes the total charge.
Also, in the shell curl e = 0, on assuming e is symmetrical, and so for a static solution of

(4-11) we must have k=0, k=0, (3:3b)

where Kk is the three-vector denoting (1/¢) times the magnetic current density. In the stan-
dard theory no value other than zero is ever contemplated for £, and k, but here, in view of
1(4-11) they must be made zero by assuming for s, and s the values

§;=0, s=gradh =— r, (r, = unit radial vector). (3+3¢)

9
4ma*da

(1) With these values we shall have a static solution of the extended electromagnetic
equations valid over all space including the charged shell at the surface of the sphere. It
differs from the standard theory not only by the presence of #, in the sphere, but also of s
in the shell. The magnetic current is zero, not absolutely, but as the result of a balance of
two opposite quasi-currents, whose densities are s and grad 4,.

(2) Considered as a field of mechanical stress the system described is everywhere in
statical equilibrium. Inside the sphere the general stress system Z (I (3-15)) reduces to a
uniform tension $4? (obviously in self equilibrium)—outside to that of the electrostatic
field (3-2), a radial tension of 2 along with an equal circumferential pressure, well known
to be in equilibrium. Within the thickness of the charged shell the two systems balance each
other. One way of verifying these statements is to observe that the conservation conditions
I(4-136), which in a static field, reduce to the conditions for the equilibrium of the stress,
are here satisfied. For example, in the shell, on omitting the terms which are evidently zero,
I (4-13b) reduces to the three-vector equation

—hs—re+[es] =0 ([..] = vector product), (3-4)
and this is identically satisfied by the values in (3-1) to (3-3).

(3) A third significant point is that when this system is regarded from the standpoint of
an observer moving with velocity —v along the axis of ¥, to whom therefore its centre appears
to be in motion with velocity -+, and the field variables are given the corresponding
standard transformations, the total energy and the x-momentum which the system now
possesses are related to the velocity precisely as are those of a particle on relativity theory.
As has been pointed out in § 1 this is what was proved by Lorentz, except that, as energy
inside the sphere could not be accounted for by classical electromagnetic theory, he had to
confine himself to pointing out that such energy would be necessary if this result were to
be produced. Although Lorentz’s conclusion is well known, it will be useful to give a brief
proof for the extended system here dealt with of the mechanical property (3), as this will
help to make clearer some of the developments which follow.

The energy and momentum of the system when in motion are calculated as consequences
of submitting the co-ordinates to an inverse Lorentz transformation along OX. This gives
the system a velocity +» along OX.

Let the centre C of the static system coincide with the origin O, and consider the field
at a point P (where CP = r, angle PCX =0, so that x = rcosd, (y2+2z2)* = p = rsinf),
when the co-ordinates, after transformation to the accented system with origin O’, have
become ¥ = plaxtot), po=p at ¢ =p(ttoxfc?), (3-5)

26-2
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where £ = 1/(1—v2/¢®)}. It has been seen in §2 that the classical transformations of the
field variables are valid for the extended equations, and they are there supplemented by
h, = invariant. We readily get for the transformed fields consequent on the inverse Lorentz

transformation B, =h, ¢ —e = fe,, hiy = afe,, (3-6)

where o = v/¢c, and the suffix ¢ to a positive term denotes a field circling right-handedly
about + OX. As these components are affected in different ways by the transformation, the
total energy due to each of them has to be calculated separately. Take as an example the
energy of the ¢,-field.

In the original static system the

T (o 1 2
¢,—energy = f f % (q:;:;f) 2mr sin Ordrd@ (3-7a)
0Ja

which is easily integrated to ¢?/12ma. But in the transformed system we must write, making
the calculation for a fixed time ¢,
7T [0 1 2
¢, —energy = fo L% (ﬂq S 0) 2nr’ sin §'r' dr’ A6, (3-7b)

4mrr?
where 7’ and 0’ are the values which C'P’" and P’C’ X’ must now possess, and a’ is the radius
in the direction ¢’ of the spheroid which the original sphere has now become.

Equation (3-75) cannot be integrated without formulae for converting 7 and ¢ into +’
and @', and these may be obtained as follows: since C’ is moving with velocity v with respect
to the new origin O’, which coincides with O at ¢ = 0, we have at time #'

v = {(x —vt')2+p' 2, cos@ = (x'—vt))]r. (3-8a)
Also, since from (3-5) x = f(x'—uvt’), the r, 0, of P in the original system to which P’ corre-
sponds, are expressible as

r={f2(x' —vt")2+p'2}}, cosl = {B(x'—vt')}/r. (3-80)
From these equations it is easy to deduce the conversion formulae
r" = Fr, sinf’ = sin 0/F, cosl' = cosO/fF, dO' = df/pF?,
= pF'r, sinf =sinf’[fF’', cosl =cost'[F', df =db0'|fF"?, (3-9)
where F=(1—a%cos?f)}, F = (1—a2sin20")} FF =1/p.
Using one or the other of these we can convert (3-75) wholly into terms of 7" and ¢’ (the

logical way, but it leads to a complicated expression), or alternatively of » and 6, using these
simply as a substitution device for effecting the integration. The latter way gives

¢,—energy = f f /5’29121146 r2d 217‘3511“9,6(,1}?02 B x (e,—energy) by (3:7a). (3-10)

The total energies, now denoted by w, and w, before and after transformation, separated
into terms showing in order the h,, € €y /z¢-constituents are given below

Wy =

\ 6— (3-11)
2l (
" 2ma\p "B

Thus w = wy/ (1 —v?/c?)
exactly as in the relativity theory of a particle.

q2
%
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The momentum is all outside the spheroid with the density

G’ = _[e'h].

The total ¥-momentum is consequently
’ 4 « 1 ’ oy ' : ! / ’
8y = f f ;e,,h¢277r 2sin'dr'dd

0Ja

1 ¢? vfe
S S C— 3-12

¢ 6ma (1 —v?/c?)} (3-12)
The momentum perpendicular to x balances itself out, so g, is all that can be observed, and,
writing it g we have

v
g= 3w (3:13)

just as with a mechanical particle. These results of course satisfy the essential condition (1-1).

(b) Any spherically symmetrical charge
The properties marked (1) to (3) in the last section are not confined to the Lorentz
electron, in which the charge is restricted to a thin shell. It can be shown that on the
extended equations a system containing any spherically symmetrical distribution of electric
charge can be constructed so as to possess them.
On assuming that the only field variables are 4, ¢,, ¢,, ¢,, and that there is no momentum

X3 VY3

or flux of energy, the energy-stress matrix Z (I (3-15)) takes the form

§(hi + 4o+ el) 0 0 0
0 Fhitg—e—el)  —eltee, eylytee, (314)
0 e h+ee, $(hf—ei4-e2—e?) —e.hteye,
0 —e,h+ee, ey +eye, s(h}—ei—e2+e?)

The condition for the equilibrium of the stress, of which Z,, to Z,, is the Euclidean repre-
sentation, namely 9,2, = 0 (k = 2 to 4) is, for £ = 2,1

(0 ] ad
_1{%%(@4—(33—33_—62) +0—y (ezlz,»#exey) +§2 (-~eyh,+exez)} = (. (3:15)

When the charge is spherically symmetrical we must have #, and e, functions of the radial
distance 7 only, and

X _Y _Z
b=y b= 0 6= 6 (3:16)
Consequently (3-15) may be written
9 oy 1 (122 g2y 9 0 d) (e e; J d\ (eh,
9;(2111)4“ L(x2—y?—z )(ﬂ—kxya—y%—xzéz} (ﬁ)+3xﬁ+(2@_y§£)( ; ) = 0. (3.17)
J _«xd d zd

The symmetry also gives Food 0 BT e d

t Note added by the author, June 1958. For 0,Z; =0 change signs of ¢,k, and —e,h,. These cancel for
symmetrical field.
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and on using this the last expression in (3:17) becomes zero, and the equation reduces to
d 1721 1,2 &
g (FhiTee?) +27=0. (3-18)

This is the differential relation between 4, and ¢, required for the system to be in equi-
librium. The same condition is obtained from the third and again from the fourth column.
Let @, be the total charge contained within a sphere of radius 7, then

e, = Q,[4mr?, (3-19)

since any symmetrical charge outside the sphere will not affect ¢,. Using this value and
assuming that %, and ¢, are zero at r = co, we can integrate (3-18), obtaining

o [ (3:20)
, 8wt 32m%
for the A-energy density at a distance r from the centre. If there is no charge outside the
r-sphere, @, is constant in the integral and the two terms cancel, making }4? zero; otherwise
it has a positive value.
Another form of interest into which (3:18) may be put is
1

d 142\ .~ er 3.9
dr (3h7) = (4mr?)? Q, dr’ (5:21)

since the other part of % (e2), viz. (3Q?) a(ir (@%)—2) ,
cancels with 2¢2/r.

These equations, which express the condition that the stress is self-equilibrated (pro-
perty (2)), are also consistent with the system being purely electromagnetic (property (1)).

They satisfy the fundamental equations (I (4:11)) since the electric charge density
J,=d@Q,/(4m2dr) is dive (3-22)

with the magnetic charge density £, and the current densities, j and k put zero. For the
magnetic current to be zero we must have
_dh_ 1 Q, d@jdr .
S = gradh, = dr A4 4m® "/zte (3:25)
by (3-21). This is in accordance with the conservation conditions (3-4), since j, = 7,.

To prove the property (3) assume a self-equilibrated system in which the total charge
@, is symmetrically distributed inside a sphere of radius @, and consider the effect of adding
to this a charge 0@, contained in a shell of thickness da at a. Let us associate with this shell
a uniform energy density Q.50

3(%}%2) = (47Td2)2 (3'2461)

inside the sphere, dropping to zero in the shell and remaining zero outside, and an energy
density, varying with the distance 7 from the centre, of

12 9a09, ,
3(26 ) o (47”,2)2 ] (3 24b)
rising in the shell from zero to this value and extending outside it to infinity. If these
densities are added to the 447 and 1¢2 of the original system, then the original, the added,
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and the combined system each satisfies (3-21) and is in self-equilibrium. Thus (3-24) gives
the overall increase of the energy density as we extend the equilibrated system by adding
a shell of arbitrary charge. The resulting increase in the total %~ and ¢, -energy is

Swy = fa 0(3h?) 4mr? dr-#fw d(3e2) 4mr2dr
0 a
e QaaQa+ QaaQa . (3‘25)

127a 4ma

As may be seen in (3-11) these values are those of a Lorentz shell system having an
effective charge ¢ = ./(2Q ,0Q,). The result found there that after a classical transformation
to motion the energy and momentum are exactly those of a classical particle (property (3)),
Le. dw = dwy/(L —v2/c?)}, dg = (v/c?) dw,
must hold here also. By extending from @ = 0 to a = oo the process of adding arbitrarily
charged shells any spherically symmetrical distribution of charge can be built up; in it the
energies dw, simply add together, and the property (3) continues to hold. The total energy
w, of the equilibrated system, which is, on writing r for « in (3-25),

w =] MQ’(dggr/fr> dr (3-26)
can be evaluated when @, is known as a function of 7. .

4. TRANSFORMATION LATITUDE

The discussion of rotation transformations in § 2 brought out the fact that the fundamental
equations of the field theory remain invariant in form when all the complex vectors con-
cerned, (¢ -+1iy, e+ih, r+is), in the fourfold representation are given a common rotation,
fS, in which f'is an arbitrary vector independent of x. This rotation may be applied at will
to the field vectors without altering d or the co-ordinate system in any way. There results
a certain latitude in permissible transformations of the equations, which is a matter of some
philosophic interest in electromagnetic theory. ‘

When we think of an electromagnetic field as an explanation of some set of phenomena,
we make a mental picture of a definite distribution of electric and magnetic forces, electric
charge and current. It will be generally admitted, I think, that when we come down to
fundamental ideas these quantities cannot be regarded as things directly observable at the
various points of the field. The verification of the picture (when it is verified) comes rather
from the calculated effects of the assumed field which do signify phenomena—effects
reached by way of the mechanical properties, energy, momentum, and Lorentz force,
attributed to the field, which can affect matter visibly. Instandard theory once a particular
field has been assumed and the co-ordinate system is not changed, there is only one such
mental picture possible—the value of each variable is definitely fixed. It now appears that
with the extended field equations there is an infinite number of sets of values which may be assumed
at will for these variables, obtained by applying to the field the arbitrary locked rotation 7S,
and each set is consistent with the phenomena to be explained. The fact must have some
meaning in electromagnetic theory but it is not immediately obvious what this is. I found
a study of'its consequences on the system denoting a charged particle useful in discovering
an answer.
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(a) Effect on a uniformly volume-charged electron
The Lorentz electron with its charge confined to an infinitely thin surface shell has the
defect of having infinite derivatives in the shell, and a better example for the purpose is
that of a charge spread uniformly over the whole volume of a sphere, this being free of
infinities. If @ is the total charge, p the charge density, and « the radius of the sphere, we

easily get by (3-20) h = (1/43) p(a2—12)}, ¢, = Lpr,
inside the sphere, and outside e, = Lpad[ri. (4-1)
With (inside) r,=J, —or

Sh ST m@p
and all other variables zero these values give a self-equilibrated system.

(i) fS transformation
To exhibit the effect of /'S on the ¢+ ik representative of this field let us simplify by writing,

as in I (2-13), :
F=1Unif0,0) = (= e 000), (+20)

(1 —u2[c2)¥ (1 —u2/c?

where u is a velocity (approximately half the v of the Lorentz transformation), such that

e = (1 (1) (20)
and SESE= = Y= B = (4:20)
Inside the sphere the transformed field is readily found to be
by =fih, e = fe, (4-34)
along with the following ¢, = —f.e,, h, =—fh, k= f.e,
Outside we have only e, =fit,, €= —fbp hy=fr0, (4:3b)

From these field values the total energy and x¥-momentum are easily calculated; they
are found to be changed from w, = Q?%/57a and g, = 0, respectively, to
w = fwy, g = a?ﬁwo = c%w, (4-4)
with g, ¢, remaining zero. Equation (4-4) gives just the energy and momentum which the par-
ticle would have if it were moving along x with the velocity v, but here, of course, there is no such
motion—the co-ordinates have not been altered, and the sphere remains fixed in the space
and unchanged in shape. The result draws our attention to the fact that it is not the energy
and momentum, but the resultant forward flux of energy in the field, that must be taken as the
criterion of motion in an electromagnetic system. Examination of this point by evaluating
the total flux of energy through the plane x = 0 shows this to be zero, so that the flux is
circuital only.
The new field like the old one satisfies the fundamental equations (I (4:10), (4:13)) when
the 7, . . 5, corresponding to fS(r+1is) are introduced; in other words it is a purely electro-
magnetic self-equilibrated system. Alternatively, the classical form (I (4-11)) is satisfied
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when ¢;, &, r, s are converted into the charge and current densities, j;, j, £;, k. Below are
given the components of the latter which are not zero

y y v Jepb R .
Ji :f;p, Jx:%f;cp> Jo = —J3 (02*—72)%, kt - J3 (a2_72)%’

inside the sphere; and outside (4-5)

Jx =Jop@ (B —3) P, j, = fopa®xp|r®.

The total charge has been increased from @ = §ma’p to f;Q. j, inside, and jy, j;, outside,
express the density (X 1/c) of a conserved current which flows through the sphere in the +x
direction, out at the front, and then symmetrically outwards curving round to enter the
sphere again at the back. In addition there is a current given by j; inside, circling nega-

tively round the x-axis. Finally, there are magnetic charges (densities £;) developed inside
the sphere, positive in front of and negative behind the centre.

(ii) ¢R transformation _
It is possible also to apply to the system (4-1) the non-classical rotations

¢’ +ih' =R (e+ih), 7' +is’ =cR-1(r+is), (4-6)
but in this case the co-ordinates must at the same time be given the inverse Lorentz trans-
formation. This consequence is obtained from the general transformation formula (2-7)
by putting /S = 1 instead of its classical value ¢S. It seems like a simplification, but it is
by no means so actually; the resulting field is as complicated as in the case just dealt with,
rather more so indeed, because the sphere has contracted to a spheroid, and the variables
are now functions of x" —v#’. Calculation of the total energy and x-momentum of the system
shows that now these are unchanged from their values in the original stationary state. On the

other hand, the total flux of energy through a fixed plane perpendicular to the motion has
a finite value forwards; and the flux " in fact satisfies the equation

divS’ = o(dW'[3x"). (47)

This is an equation the satisfying of which ensures that the flux gives just the same result
for the energy density changes at a point as if the energy were being carried forward bodily
with velocity v along x; for its two sides are the expressions—on the left by conservation
principle, on the right by bodily motion theory—for the rate of decrease of the energy
density at the point.

(iii) RS transformation
IfacR-transformation is applied to the field ((4-2) to (4-5) with fwritten ¢) resulting from

a ¢S-transformation, the non-classical features the field possesses are annulled, and the net

result is that of a classical transformation to motion with velocity v of the original static
field. The new field values are

, 1
kt:ﬁ

inside the spheroid, and outside it

BF (a'2—r'2)% o — Lfpr', by = asin@'e,
(45)
e, = fpa’3lr'?,  hy = asind’e,.

27 Vor. 253. A.
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The energy, momentum, and energy flux now behave all together in the standard way,
the only new (and somewhat unexpected) feature being that there is now a circularly
directed momentum density—#, 4;/c inside the spheroid (accompanied by an opposite
flux of energy—a well-known effect when matter under tension moves, e.g. in the belt of a
driven dynamo) which gives to the system a moment of momentum about OX of

—0Q?/(64/3¢%).
A spherically symmetrical particle obviously cannot possess spin when it is at rest, but

apparently here one develops along with motion. The only other variables remaining finite
are the charge and current densities

Ji =Pps ¢z = caflp (4-9)
inside the spheroid. They satisfy the bodily transference condition
div ¢j’ = v(dj;[0x"),
both inside, and at the surface of the spheroid.

(b) Some general conclusions

The example has shown that the electromagnetic field describing a stationary particle
may be transformed at will into an equivalent field in which the energy and momentum
(but not the energy flux) have the values that normally correspond to motion with an
arbitrary velocity; and this may be done without the co-ordinate system being altered in
any way, so that the particle continues definitely stationary.

(i) Alittle reflection shows that a similar transformation is possible in the ordinary theory
of the mechanics of particles. When considering a system of colliding particles we normally
reckon the energy and momentum of each to have its ‘rest value’ (m,c? and 0, respectively)
when the particle is at rest with respect to ourselves; but it is evident that no difference will
be made to anything observable if we based the definition of the energies and momenta
on some other assumed standard of rest. In the early classical days this idea was common-
place—the ‘real’ momentum of objects on earth was indeterminate, because that due to
any assumed earth velocity (then merely to be added on) always cancelled in the calculation
of observable effects in earth-bound systems. But it is equally a consequence of the relativity
principle—although one tends to overlook it, for the resulting formulae are complicated
and of no practical use. The matter becomes much simplified by dealing with the repre-
sentation of the system in Euclidean 4-space. It may be summed up by saying that the
energy-momentum vectors p of particles are not obliged to be parallel to the displacement
vectors dx which mark their tracks in space and time. By assuming a suitable standard of
rest for the definition of the energies and momenta the p’s may be imagined lying at any
given fixed angle to the dx’s without this affecting any physical observable that comes in
the representation, such as the calculated displacement vectors of visible particles after
collisions. The p’s thus admit an arbitrary Lorentz rotation to be applied to them all
together independently of the co-ordinates; and this is exactly what has been found above
to be the consequence of transformation latitude in the electromagnetic theory of particle
constitution.

(ii) I have not seen the possibility of this latitude in the permissible transformations of
either mechanical or electrical quantities referred to in standard works on the tensor
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calculus. (But here I should like to explain that throughout this work by ‘standard’
calculus I have meant that described by, for example, Eddington and Pauli in their books
on relativity.) There a tensor is defined as a set of quantities which, on transformation of
the co-ordinates, transforms in a single stated way for each contravariant, and each co-
variant, aspect. For this to be the case the quantities must be regarded as having defined
values for each set of co-ordinates. But for mechanical and electrical quantities there is a
possibility of taking different definitions, and the quantities are not then fixed uniquely for
each co-ordinate system until a choice has been made. In this event they may become open
to transformations whose effect is virtually to change them from one definition to another
without the co-ordinate system itself being changed. The ‘latitude’ transformation ( fS) is
an example of such a transformation ; perhaps it is not stretching theidea too much toregard
the e-transformation by which in part I the matrix of mechanical components of matter,
Z, is obtained from a matrix of the electrical components, as another, for it also is effected
without change of the co-ordinate system—but it is a rather surprising change-over of
definitions from a physical point of view. Evidently these are not tensor transformations
as defined above, but so long as they do not change the tensor character of the quantities,
they can easily be included in the scheme.

I should like here (for this seems the appropriate place) to make the following remarks
in reference to a recent note by G. W. Kilmister (1953) on the subject of the earlier papers.
Paper B was concerned with the result, quoted here in equation (2-1), concerning the rela-
tive transformational behaviour of a matrix and its e-transform. Inspection of these for-
mulae makes it evident that, while either might be regarded as a standard tensor and sub-
mitted to a given transformation corresponding to that of the co-ordinates, the other with
its different transformation cannot be a standard tensor (in the sense explained above) at
the same time. Ultimately the reason is that the constant resultant magnitude which
characterizes the relation between them is not an invariant in the standard tensor theory.
Consequently it seemed useful to show that, by defining the covariant transformation rule
in another than the standard way, a calculus could be devised in which the resultant magni-
tude was an invariant of the transformations, and in which a matrix and its e-transform
could be regarded simultaneously as tensors of the same class. I do not think this calculus
has much useful application in general relativity theory, but in the ‘transformations at
constant resultant magnitude’ by which the relation between the field- and energy-stress
matrices has been derived its use has been required in the present work. I regret, however,
that through my ignorance of modern mathematical work I described it as an ‘extension’
of the tensor theory. Dr Kilmister, who in his note has extended and generalized some of
my results, has pointed out that my extension is, or can be, included in the modern general
theory of tensors, which has been considerably enlarged since Eddington’s time by group
theory and matric algebras. By his kindness I gather that the modern mathematical theory
does not concern itself with the special characters of the covariant transformations and the
corresponding invariants, but includes all the possible transformations together under
group theory.

(iii)  One has only to refer to the description below equation (2:5) to see that the electro-
magnetic picture resulting from the fS transformation is much more complicated than the

simple original one. It is understandable that when phenomena can be accounted for by
27-2
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different schemes we should make a point of choosing the simplest of these, and there is
no question the standard theory gives this. But the fact that there are other possible ones
throws light on the nature of some of the fundamental concepts concerned; and while it
is comparatively easy to admit that the energy and momentum of a particle are not things
having unique values with a given co-ordinate system, it is not so easy to accept charge,
electric or magnetic, in the same category; yet these also have been changed by the trans-
formation. The result is quite inconsistent with the older classic idea, on which the Lorentz
restriction I (4-17) was founded, that electric chargeisactually an objective entity, presented
to us by Nature, which moves about bodily from place to place in the field.

The basis of this idea is, of course, the fact that as a result of the classic equations charge
automatically satisfies an equation of continuity, Dj = 0. Yet the same result holds in the
extended equations, as may readily be verified (Dk = 0 also). Nevertheless, the extended
equations show (I (4-104)) that j, instead of being a single entity, is a composite structure,
consisting of two parts, gr and —#De,, and it is only to the sum of the two that the con-
tinuity equation applies. We cannot picture the parts by themselves as charges in motion;
they must be regarded, like e and h, as quantities continuously varying with the time at
each point of the field; yet their sum behaves as if it were something indestructible moving
about in space, possessing an acquired individuality like a wave on a water surface. The
Lorentz transformation alters the two parts in the same way, and consequently j behaves
as a standard tensor; there is then nothing to come into conflict with the idea of the objec-
tivity of charge. But the fS-transformation alters the parts in different ways and hence j
in a complicated way which us in conflict with that idea and this requires us, in fundamental
theory at any rate, to recognize charge and current as essentially a mentally constructed
entity. ,

5. PARTICLES WITH INTEGRAL NUMBERS OF UNITS OF CHARGE AND MASS

In calculations on the construction of electromagnetic fields, which have the mechanical
properties of particles, there are as many as four scalar variables at disposal—r,, s, (alter-
natively j, &,), and ¢, &, It seems almost an embarrassment of riches for it leaves the charge,
size, and mass of the particle correspondingly arbitrary. The number of variables might
be reduced by imposing conditions on them.

In a spherically symmetrical static field the condition for self-equilibrium (3-23) takes
the form (writing p for j,, e, for e) dh,

Sh_ P
dr A i
so that if we put p = kh,, (51)
dh, )
then qT = ke (5-2)

k is not a constant—for example, in the uniformly volume-charged sphere by (4-1) it varies
from ./3/a at r = 0 to c0 at 7 = a. The condition that « should be constant over the whole
sphere seemed to have possibilities and this case is investigated below. We shall then have

for (5-2), since Q ro,
b = pra and Q—fozlﬂr pdr, (5-3a,b)
di, &y (7

r2h,dr.

dr 72 0
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This gives the second-order equation

d?s, 2dh

T 2o 40
the solution of which is h, = (Asinkr+Bcoskr)/r,

where 4 and B are constants. On assuming that 4,is not infinite at 7 = 0, the solution reduces
to .
h, = (Asinkr)[r. (5-40)

Starting with the value «4 at the centre, £, is reduced to zero at a distance r = n/k. From
this distance on we can complete the scheme by the plain electrostatic field of the total
charge, and the whole system will possess the electrical and mechanical properties proved
in § 3. But (5-44) also draws attention to an idea not there considered that, without breaking
the condition for equilibrium (which depends only on the squares of %, and ¢,), #, might be
positive in some places and negative in others. It indicates the mathematical possibility
of alternating shells of positive and negative /%, extending with a gradual diminution of
amplitude to infinity. The alternating system can also be terminated at any point where
h, = 0, if continued by the electrostatic field of the contained charge. Since p = «#,, the
solution will also involve the presence in alternate shells of positive and negative charges.
On classical lines it is of course impossible to picture such charges freely suspended in space,
but with the extended theory that difficulty no longer exists.

The charge contained in a sphere of radius r is by (5:34), (5-1) and (5-45)

Q= 4m<Af rsinkrdr
0

= 47rA(—rcos K+ Kr) . (5-5)
At the radii at which #, is zero r is n7/k, and
Q = +-4m?An/k, (5-6)

according as 7 1s odd or even. The charge in successive shells, alternately + and —, goes on
increasing without limit. There are radii at which the total charge is zero, but they are not
points at which the shell system can be terminated, since /4, is not zero at them, and a Lorentz
shell of infinite charge density (not only a somewhat artificial concept, but one which
brings back the charge) would have to be assumed to effect an equilibrated change to an
electrostatic field.

By (5-4b), (5°5), and (5-3a) the energy density at r is

1 42 2coskrsinkr  sin®kr
b+e) =577 (1— .y
7 Kr K2r

Multiplying this by 47r2dr and integrating from 0 to 7, one gets for the energy inside a
sphere of radius r the value

sin? Kr)
b

2w A?%r (1 — (5:7)

27-3
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which reduces to 2#24%n/k for r = nm/k. On continuing from here by the electrostatic field
necessary for equilibrium, namely e, = 4-4n%4n/(x 4mr?), the energy external to the sphere
18 1 e
»j e2dmr?dr = 2n%42n/k. (5-8)
2J natn

Whatever the size of the sphere, there is the same amount of energy inside and outside it,
and the total rest energy of the system is

wy = 4m? A%/ = AQ,, (5-9)

where @, is the magnitude of the total charge @, whether this is positive or negative (n odd
or even).

The system which results from the simple condition that p/4, shall be constant is of un-
expected interest. It is not surprising that the condition should fix the size of the particle,
but there is the additional result that the solution gives a series of particles, which are only
capable of existing when their charges and energies are integral multiples of the smallest
values. The mathematical reason for this is that the equation for 4, (54 4) is a form of wave
equation, and the shells bounded by zero 4, are successive half~waves of a spherical train
of constant wavelength 27/«. The waves are very different from any contemplated in clas-
sical electromagnetic theory. The field changes along them, not from a transverse electric
to a perpendicular magnetic force, but from a scalar #, to a radial electric force, these quan-
tities like the former having distinguishable kinds of energy.

While still recognizing the ultimate inadequacy of the classical description of particles,
one may regard this system of shells as a very simplified classical model of a compound-
charged particle in which each constituent particle has gone into the form of a concentric
wave shell. This is feasible because each full wavelength shell, i.e. from 7= n7/k to
r = (n+2) w/k (n odd), carries the same charge

q = 8m2An/«, (5°10)
and an energy in proportion. (A half-wavelength has a charge greater than the whole
system but without the corresponding energy, and it could not exist as a particle.) The
system 1is rather like our idea of an atomic nucleus, although perhaps it is too simple and
idealized to be of practical use in that theory. Nevertheless, it seems distinctly of interest
that the shell constitution should have been presented so readily by the extended electro-
magnetic theory, and in the next section it is shown that the most straightforward simpli-

fication possible of the general equations in fields containing charge, leads to the wave
equation which produced these results.

6. RELATION OF FIELD EQUATIONS TO WAVE THEORY
In part I the field equations were obtained in the form of a differential relation (I (4-9))

IR"Y(e+ik) = r+is, (6-1)

defining the derived field 7+is of an arbitrary vector field e+ik, the two fields being subject
to the ‘conservation restriction’ (I (4:135) also (2-12a)), which will here be written

fe = —3h, 7Splh=3Sple (k=2 to 4). (6:2)
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The problem suggested by the last section is to combine (6:1) and (6-2) into a single linear
form with the least possible reduction in generality.

In (6-2) ¢, k, 1, s are not vectors in the sense of the standard calculus; each is a set of four
all-real components in a manifold in which x, is real and x, to x, are imaginary; nevertheless,
for the present purpose we can imagine them as represented by lines in the Euclidean
4-space. Equation (6-2) then indicates that, apart from a change of sign, r stands in the
same relation to ¢ and £, as s does to z and e. Let us consider the restriction that the four
scalar products 7¢ and 7S; !4 (k = 2 to 4) are each zero. This means that 7 is to be perpen-
dicular to ¢ and also to the three lines S;14, S3'4, Sy'4. These three lines are mutually
perpendicular, and each is perpendicular to 4. Henceris parallel to /, and (6-2) now requires
in a similar way that s is perpendicular to # and parallel to e. It follows also that ¢ must be

perpendicular to 4, or ¢h =0, with also 7s=0. (6-3)

The restriction thus makes the field completely orthogonal, ¢ and s alined together being
perpendicular to % and r alined together.

The simplified class of field thus arrived at is characterized by a corresponding simpli-
fication in the value of its resultant magnitude. By I (3-14) this is

Zy — {(do—Rh)*+4(eh)?}, (6-4)
and when ¢k = 0, Z; undergoes the considerable reduction to
Zy =+ (¢e—hh). (6:5)

Suppose that this field at any point is rotated in the fourfold until it reaches the original
rest-state contemplated in I (3-1), where it will be represented by two lines, ¢ -+i4°, ¢® —iA9,
of magnitudes ¢,-+1i4,, ¢,—iky, each parallel to the axis 1. In the general case the resultant
magnitude (6-4) is reduced to

Zy = {(e§ —h3)*+4(eoho) 2}t = (3 +15), (6:6)
while (6-5) reduces to Zy =+ (e2—h3), (6-7)

and these cannot agree unless either ¢® or /° is zero. The limitation to orthogonal fields is
thus equivalent to the assumption that the complexity of the vectors can be transformed
away (or regarded as produced) by real rotations. This seems a reasonable assumption to
make, so long as it is a single primitive field such as might constitute a particle that is con-
sidered (for orthogonality is not invariant to superposition of fields). In I(8:1) the rest-
state field is regarded as the result of factorizing the rest density of fundamental matter,
and there seems no special reason for making the factors complex.

The field being assumed orthogonal, 7 and s can be eliminated from (6-1) by writing
r = kh, s = k’¢, but the resulting equation will not be invariant in form when two such
fields are superposed unless " = « and « is the same for both fields. Accepting this we get
for the equation IR (e-+ih) = k(h+ie) = ik(e—ih). (6-8)
The condition for « requires it to be either a function of the absolute position in the fourfold,
which would be meaningless, or a constant; so we are practically committed to « = con-
stant as a further restriction to be imposed. « has the dimensions of (length)~!, and if its

value were known this would fix the linear size of an electron constructed in accordance
with (6-8), but there is nothing in this analysis to determine a numerical value for it.
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One has now to ask if (6-8) is a satisfactory equation in that it keeps its form invariant
under a Lorentz transformation of co-ordinates. For this to be the case the first condition
evidently is that x must be invariant. Secondly, the equation has to satisfy the general
transformation conditions of (6-1). These have been obtained in (2-7), and they show that
when, after transformation, ¢+ik becomes ¢R fS(e+ik), the right-hand side of (6-8),
which stands for and must transform in the same way as r+-1is, will require that

(e—ih)" =¢R~1fS(e—1ih).
But as the conjugate of (e-+i%) this must also take the form
(e—ih)" = ¢*R f*S(e—ih).
The condition for invariance of form thus is
*R =Rl f*S=f8S. (6-9)

It will be satisfied if ¢R, /'S denote rotation through an imaginary and a real angle, respec-
tively. The former is the more usual type of rotation, but the latter can always be applied,
since it is arbitrary, the simplest case being got by taking /'S as 1. But it must be noted that
(6-8) is not invariant to the more limited transformation of the classical field equations, for
this requires f to be identified with ¢, and it is then impossible to satisfy the second condition
of (6-9).

When « is real, (6-9) is a first-order form of a second-order wave equation, which is readily
obtained from it as follows. In order to show the i’s in them explicitly write

—9R = 3ct—iakRk> ER—l = at:)}—l—iakl{k (k =X%Y, Z):

Then (6+9) gives IR Y(e+ih) = (06—, R, k) +1(0,h 40, Re)
= kh+1i(ke);
and IR .OR"(e+ih) = k(d,,—10,R;) (h+1ie)
= k(0,h+0,Rye) +1(0,6—0, R, A),
or 00(¢+1h) = k*(e+1h). (6-10)

This is a well-known form of wave equation in which the phase velocity of a train of
plane waves is different from ¢ and moreover depends on the wavelength, so that the train
is subject to dispersion. Itis, I think, a new result to find that the electromagnetic equations
(as extended here, but still in their fundamental form and not modified by introducing
factors like # and K to make them apply to material media) can include the wave form
(6-10). This equation bears an obvious resemblance to the form

00y = — 2y, (6-11)

which is the basis of the wave theory of particles. At first sight it looks as though the two
equations might easily be identified by assumung the « in (6-10) to be imaginary, but a
repetition of the deduction with « put ix (real number) shows that the suggestion fails;
the identifications now have to be made differently, and the final result is unchanged
from (6-10).
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The general case in which « is complex may be discussed by considering the result for
the vector potential field ¢ of the electromagnetic identity (I (4:12)). Suppose ¢ to be a
field limited to satisfying the equation

IR = kg*. (6:12)
Then, since the conjugate equation must also hold, and all the R, are real,
| I*RP* = r*4.
Consequently, 0*R.IR$ = kd*¥*Rp* = kx*g,
and this is the same as 00§ = kr*§. (6-13)

Thus whether « is real or imaginary the coeflicient of ¢ in (6:13) must be a positive real.
The use of a quaternionic set (R or another) is essential for obtaining the electromagnetic
equations, and it cannot be applied to (6-11).

As is well-known, Dirac discovered a method of factorizing dd in (6-11) so as to get a
first-order equation, which is 3B ¥ — ki (6-14)

in E-number notation. If the E, .. E, are mutually anticommuting 42 matrices, each a
square root of —1, we have

05E;.0,E, ¢ = — (03 +... +09) ¥ = %,
and (6-11) is always satisfied. (6-14) is somewhat similar to the electromagnetic (6:12) but
the E, are not quaternionic (in a simple case we might put E, . . E, = R,, R,,iR,S,,iR,S,),
and so the equations are intrinsically different.
In the two second-order equations,

d0¢ = k% and 90y = —«%,

while there is an evident correspondence which may be significant, the fundamental
character of the difference between them is demonstrated by the fact that the former
requires the wave velocity to be less than, and the latter greater than, ¢. The plane wave
form A sin 27 (v — kx) satisfies the ¢-equation only if the phase velocity v/k is ¢(1 —«2/4m2k?),
and the y-equation only if v/k = ¢(1 4 x2/4n%?). The ¢-equation denotes the existence of
a special kind of electromagnetic waves, the velocity of which, as might be expected, is
always less than that of light, in a certain class of fields recognized as possible in the ex-
tended theory. The waves of the y-equation, on the other hand, are the de Broglie waves
of velocities greater than light which are associated in modern theory with the energies
and momenta of moving particles. In the common use of this equation a particle is treated
as an object whose position and momentum, time and energy, are not open to exact know-
ledge, and have to be stated in terms of a probability determined from the wave field of y.
The mathematical reason why the — sign comes into the y-equation is that the differ-
ential operator which represents the classic energy momentum (i.e. not the quantum value
hv, hk) is taken to be an imaginary quantity of the form id. Justifiable as this is for its purpose,
it is outside the scope of the g-equation, or the electromagnetic equations, which are built
on the view that the classic energy momentum is represented by a real number. In their
application to particles these appear to serve a different purpose from the y-equation—
although one has to recognize that the latter is used extensively in modern work as the basis
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226 S. R. MILNER

of theories of the constitution of nuclear particles (Peierls 1953). In the present paper, in
seeking to develop the theory of particle constitution, the aim has been to pursue the
classical theory on its own lines until the quantum considerations of probabilities are
required. The construction of the elementary model atom in the previous section is, in fact,
an example of the application of the ¢-equation in the form (6-10) to a spherically sym-
metrical system.
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